The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury

Author:

Ahuja Christopher S.123,Mothe Andrea3,Khazaei Mohamad3,Badhiwala Jetan H.1,Gilbert Emily A.4,Kooy Derek5,Morshead Cindi M.246,Tator Charles123,Fehlings Michael G.123

Affiliation:

1. Division of Neurosurgery, Department of Surgery University of Toronto, Toronto, Ontario, Canada

2. Institute of Medical Science University of Toronto, Toronto, Ontario, Canada

3. Department of Genetics and Development Krembil Research Institute, UHN, Toronto, Ontario, Canada

4. Division of Anatomy, Department of Surgery University of Toronto, Toronto, Ontario, Canada

5. Department of Molecular Genetics University of Toronto, Toronto, Ontario, Canada

6. Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field. Significance statement Traumatic spinal cord injuries (SCIs) result in tremendous lifelong disability and financial burden for millions of patients and caregivers worldwide. Cell-based therapies have emerged as an exciting neuroprotective and neuroregenerative strategy for SCI. This review highlights key preclinical and clinical data in cell therapy with an emphasis on the pathobiology and mechanisms of recovery. Also discussed are adjunct treatments to maximize the efficacy of the grafts. Finally, important translational considerations such as clinical-grade scale-up and delivery techniques are discussed. The article succinctly provides readers with a working knowledge of SCI and cell therapies at the leading edge of research.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3