DRLNPS: A deep reinforcement learning network path switching solution

Author:

van Hooren Dave1,Yang Song1,Shen Qi2ORCID

Affiliation:

1. Beijing Institute of Technology Beijing China

2. Beijing Union University Beijing China

Abstract

SummaryThis paper proposes a solution to the problem of switching between different network paths. We choose to switch between multiprotocol label switching (MPLS) and software‐defined wide area networking (SD‐WAN) connections specifically as they are the mainstream currently. The solution should maintain a service license agreement (SLA) while choosing SD‐WAN as long as possible to save cost. Therefore, a deep reinforcement learning solution is proposed that predicts when to switch based on bandwidth availability and quality of service (QoS) parameters like jitter and delay. Results show that double deep Q learning in combination with these parameters are suitable to make a sophisticated decision on link switching between MPLS and SD‐WAN.

Publisher

Wiley

Reference22 articles.

1. MPLS: the magic behind the myths [multiprotocol label switching]

2. Ethan Banks.Software‐defined WAN: a primer;2015.

3. Mordor Intelligence.Managed MPLS market | growth trends and forecast (2019–2024);2018.

4. B4

5. SDN-based network orchestration for new dynamic Enterprise Networking services

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient resource provisioning and traffic load balancing in multiprotocol label switched network using optimized gated graph convolution neural network;Wireless Networks;2025-05-24

2. Enhancing Wildlife Monitoring in Variable Network Coverage Areas with Deep RL-based SD-WANs;2024 IEEE 29th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD);2024-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3