Modulation of FOXD3 Activity in Human Embryonic Stem Cells Directs Pluripotency and Paraxial Mesoderm Fates

Author:

Arduini Brigitte L.1,Brivanlou Ali H.1

Affiliation:

1. Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, New York, USA

Abstract

Abstract Transcription factor Foxd3 has been described in model systems as a key member of the pluripotency network in mice as well as being involved in the formation of many critical vertebrate cell types in vivo. Yet virtually nothing is known about roles of FOXD3 in human development and conflicting reports exist regarding its expression in human embryonic stem cells (hESCs). We find that FOXD3 is expressed at both the RNA and protein levels in undifferentiated hESCs and report a Foxd3 expression domain in paraxial mesoderm derivatives of wild-type mouse embryos. Furthermore, increasing FOXD3 activity in hESCs is sufficient for rapid and specific generation of mesenchymal cell types of the paraxial mesoderm, even under pluripotency maintenance conditions. Gene expression diagnostic of chondroblasts, skeletal myoblasts, osteoblasts, and adipoblast is observed within 48 hours of FOXD3 induction, as are morphological and genetic hallmarks of epithelial-to-mesenchymal transition. FOXD3-overexpressing cells can be maintained for several passages, while downregulation of the transgene leads to further differentiation. Loss-of-function also leads to differentiation, toward endoderm and mesoderm. Taken together, these data indicate that a balance of FOXD3 activity is required to maintain pluripotency.

Funder

NYSTEM award

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3