Multivariate functional mixed model with MRI data: An application to Alzheimer's disease

Author:

Zou Haotian1ORCID,Xiao Luo2ORCID,Zeng Donglin1,Luo Sheng3ORCID,

Affiliation:

1. Department of Biostatistics University of North Carolina Chapel Hill North Carolina

2. Department of Statistics North Carolina State University Raleigh North Carolina

3. Department of Biostatistics and Bioinformatics Duke University Durham North Carolina

Abstract

SummaryAlzheimer's Disease (AD) is the leading cause of dementia and impairment in various domains. Recent AD studies, (ie, Alzheimer's Disease Neuroimaging Initiative (ADNI) study), collect multimodal data, including longitudinal neurological assessments and magnetic resonance imaging (MRI) data, to better study the disease progression. Adopting early interventions is essential to slow AD progression for subjects with mild cognitive impairment (MCI). It is of particular interest to develop an AD predictive model that leverages multimodal data and provides accurate personalized predictions. In this article, we propose a multivariate functional mixed model with MRI data (MFMM‐MRI) that simultaneously models longitudinal neurological assessments, baseline MRI data, and the survival outcome (ie, dementia onset) for subjects with MCI at baseline. Two functional forms (the random‐effects model and instantaneous model) linking the longitudinal and survival process are investigated. We use Markov Chain Monte Carlo (MCMC) method based on No‐U‐Turn Sampling (NUTS) algorithm to obtain posterior samples. We develop a dynamic prediction framework that provides accurate personalized predictions of longitudinal trajectories and survival probability. We apply MFMM‐MRI to the ADNI study and identify significant associations among longitudinal outcomes, MRI data, and the risk of dementia onset. The instantaneous model with voxels from the whole brain has the best prediction performance among all candidate models. The simulation study supports the validity of the estimation and dynamic prediction method.

Funder

National Institute on Aging

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Survival Prediction Using Sparse Longitudinal Images via Multi-Dimensional Functional Principal Component Analysis;Journal of Computational and Graphical Statistics;2024-05-23

2. Super-resolution algorithm of brain magnetic resonance image of Alzheimer45s disease based on 2D-VMD-MTV;Proceedings of the 5th International Conference on Computer Information and Big Data Applications;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3