Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/acrylonitrile‐EPDM‐styrene blends

Author:

Luna Carlos Bruno Barreto1ORCID,Da Silva Barbosa Ferreira Eduardo1,Do Nascimento Emanuel Pereira1,Da Silva Adriano Lima1,De Albuquerque Ananda Karoline Camelo1,Wellen Renate Maria Ramos2,Araújo Edcleide Maria1

Affiliation:

1. Academic Unit of Materials Engineering Federal University of Campina Grande Campina Grande Brazil

2. Department of Materials Engineering Federal University of Paraíba, Cidade Universitária João Pessoa Brazil

Abstract

AbstractAcrylonitrile‐EPDM‐styrene (AES) was applied as an impact modifier for poly(lactic acid) (PLA), and the combined effect of dicumyl peroxide (DCP) crosslinking and annealing heat treatment was investigated. Torque rheometry, melt flow index (MFI), mechanical properties (impact, tensile, and Shore D hardness), X‐ray diffraction (XRD), infrared spectroscopy (FTIR), heat deflection temperature (HDT), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were investigated. There was a considerable torque increment and fluidity drop in the PLA/AES/DCP blends caused by the crosslinking process and the formation of PLA‐g‐AES. Consequently, the impact strength and elongation at break properties improved. As an engineering terpolymer, AES was decisive in maintaining high elastic modulus, Shore D hardness, and HDT values. The PLA/AES/DCP (0.8 phr) composition leaned towards a synergism of mechanical properties, gaining 505.6% and 264.8% in impact strength and elongation at break, respectively, compared to neat PLA. FTIR and XRD analysis revealed high crystallinity, with samples presenting large crystals. The higher crystallinity had a deleterious effect on the mechanical properties of the PLA/AES/DCP blends. However, there was a marked improvement in HDT and higher toughness compared to PLA. The results before and after annealing the PLA/AES/DCP (0.8 phr) blend are promising for constructing new semi‐biodegradable materials for additive manufacturing.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3