Affiliation:
1. State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
2. Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
Abstract
AbstractRegulating Ni active sites toward the formation of target product is of great importance for designing high‐performance cost‐effective catalysts for catalytic semi‐hydrogenations but remains challenging. Herein, we report the fabrication of NiSb intermetallic catalyst via structural transformation from a layered double hydroxides precursor for boosting propyne semi‐hydrogenation. Systematic characterizations, including x‐ray diffraction, atomic‐resolution electron microscopy, and x‐ray absorption spectroscopy, provide evidence for the formation of P63/mmc NiSb intermetallic phase in the synthesized NiSb catalyst. The host Ni active sites are demonstrated to be isolated by the high‐electronegativity p‐block guest Sb sites, which deliver remarkably high selectivity to target propene, that is, up to propene selectivity of 96% at nearly full propyne conversion. Temperature‐programmed surface reaction and temperature‐programmed desorption measurements combined with theoretical calculations unravel that the excellent selectivity originates from kinetically more favorable desorption of propene than its hydrogenation to propane on the regulated Ni active sites.
Funder
Shanghai Rising-Star Program
Program of Shanghai Academic Research Leader
National Natural Science Foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献