Methoxymethyl cation [CH3OCH2]+ revisited: Experimental and theoretical study

Author:

Audier H. E.,Bouchoux G.,McMahon T. B.,Milliet A.,Vulpius T.

Abstract

AbstractThe metastable dissociation of the methoxymethyl cation and a number of its deuterium and 13C variants was examined using a reverse‐geometry double‐focusing mass spectrometer. The loss of methane from the methoxymethyl cation clearly showed a composite peak shape which, when deconvoluted, revealed a bimodal kinetic energy release distribution in the resulting formyl cations. Labelling experiments revealed that the two carbon atoms and all hydrogens become equivalent on the time‐scale of the unimolecular dissociation lifetime of the decomposing ion. A small deuterium isotope effect was found which can be rationalized on the basis of zero point energy effects. The bimodal kinetic energy release distribution was shown, with the aid of a four‐sector instrument, to be due to the production of both formyl cation (with a large kinetic energy release) and isoformyl cation (with a much smaller kinetic energy release). The methoxymethyl cation was also prepared with a precisely defined amount of internal energy in a Fourier transform ion cyclotron resonance (FTICR) spectrometer by the reaction of methyl cation with formaldehyde. Experiments with 13C and deuterium labelling revealed that the dissociation to formyl cation of the methoxymethyl cations formed in the low‐pressure FTICR cell by reaction of methyl cation with formaldehyde is accompanied by complete scrambling of the carbons and incomplete scrambling of the hydrogens. Ab initio calculations were carried out which identified and characterized each of the stable minima and transition states for the appropriate reactions. The calculations were fully consistent with the mechanism deduced on the basis of the experimental data.

Publisher

Wiley

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3