Increased Bone Volume by Ixazomib in Multiple Myeloma: 3-Month Results from an Open Label Phase 2 Study

Author:

Diaz-delCastillo Marta1ORCID,Gundesen Michael Tveden23ORCID,Andersen Christian Walther4ORCID,Nielsen Anne Lerberg4ORCID,Møller Hanne Elisabeth Højsgaard5ORCID,Vinholt Pernille Just6ORCID,Asmussen Jon Thor7ORCID,Kristensen Ida Bruun83ORCID,Nyvold Charlotte Guldborg8ORCID,Abildgaard Niels23ORCID,Levin Andersen Thomas521ORCID,Lund Thomas23ORCID

Affiliation:

1. Department of Forensic Medicine Aarhus University Aarhus Denmark

2. Department of Clinical Research University of Southern Denmark Odense Denmark

3. Department of Hematology Odense University Hospital Odense Denmark

4. Department of Nuclear Medicine Odense University Hospital Odense Denmark

5. Department of Pathology Odense University Hospital Odense Denmark

6. Department of Clinical Biochemistry Odense University Hospital Odense Denmark

7. Department of Radiology Odense University Hospital Odense Denmark

8. Hematology-Pathology Research Laboratory, Research Unit for Hematology & Research Unit for Pathology University of Southern Denmark & Odense University Hospital Odense Denmark

Abstract

ABSTRACT Multiple myeloma (MM) is an incurable bone marrow cancer characterized by the development of osteolytic lesions due to the myeloma-induced increase in osteoclastogenesis and decrease in osteoblastic activity. The standard treatment of MM often involves proteasome inhibitors (PIs), which can also have a beneficial off-target bone anabolic effect. However, long-term treatment with PIs is unadvised due to their high side-effect burden and inconvenient route of administration. Ixazomib is a new-generation, oral PI that is generally well tolerated; however, its bone effect remains unknown. Here, we describe the 3-month results of a single-center phase II clinical trial investigating the effect of ixazomib treatment on bone formation and bone microstructure. Thirty patients with MM in stable disease not receiving antimyeloma treatment for ≥3 months and presenting ≥2 osteolytic lesions received monthly ixazomib treatment cycles. Serum and plasma samples were collected at baseline and monthly thereafter. Sodium 18F-Fluoride positron emission tomography (NaF-PET) whole-body scans and trephine iliac crest bone biopsies were collected before and after three treatment cycles. The serum levels of bone remodeling biomarkers suggested an early ixazomib-induced decrease in bone resorption. NaF-PET scans indicated unchanged bone formation ratios; however, histological analyses of bone biopsies revealed a significant increase in bone volume per total volume after treatment. Further analyses of bone biopsies showed unchanged osteoclast number and COLL1A1High-expressing osteoblasts on bone surfaces. Next, we analyzed the superficial bone structural units (BSUs), which represent each recent microscopic bone remodeling event. Osteopontin staining revealed that following treatment, significantly more BSUs were enlarged (>200,000 μm2), and the distribution frequency of their shape was significantly different from baseline. Overall, our data suggest that ixazomib induces overflow remodeling-based bone formation by decreasing the level of bone resorption and promoting longer bone formation events, making it a potentially valuable candidate for future maintenance treatment. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

Funder

Takeda Pharmaceutical Company

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3