Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions

Author:

Uddin Mohammed Raihan1ORCID,Chen Xiaolin2ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering Ohio State University Columbus Ohio USA

2. School of Engineering and Computer Science Washington State University Vancouver Washington USA

Abstract

AbstractReliable separation of circulating tumor cells from blood cells is crucial for early cancer diagnosis and prognosis. Many conventional microfluidic platforms take advantage of the size difference between particles for their separation, which renders them impractical for sorting overlapping‐sized cells. To address this concern, a hybrid inertial‐dielectrophoretic microfluidic chip is proposed in this work for continuous and single‐stage separation of lung cancer cell line A549 cells from white blood cells of overlapping size. The working mechanism of the proposed spiral microchannel embedded with planar interdigitated electrodes is validated against the experimental results. A numerical investigation is carried out over a range of flow conditions and electric field intensity to determine the separation efficiency and migration characteristics of the cell mixture. The results demonstrate the unique capability of the proposed microchannel to achieve high‐throughput separation of cells at low applied voltages in both vertical and lateral directions. A significant lateral separation distance between the CTCs and the WBCs has been achieved, which allows for high‐resolution and effective separation of cells. The separation resolution can be controlled by adjusting the strength of the applied electric field. Furthermore, the results demonstrate that the lateral separation distance is maximum at a voltage termed the critical voltage, which increases with the increase in the flow rate. The proposed microchannel and the developed technique can provide valuable insight into the development of a tunable and robust medical device for effective and high‐throughput separation of cancer cells from the WBCs.

Funder

National Science Foundation

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3