Reducing time and memory requirements in topology optimization of transient problems

Author:

Theulings M. J. B.12ORCID,Maas R.2,Noël L.1,van Keulen F.1ORCID,Langelaar M.1ORCID

Affiliation:

1. Computational Design and Mechanics Delft University of Technology Delft The Netherlands

2. Aerospace Vehicle Collaborative Engineering Royal Netherlands Aerospace Centre Amsterdam The Netherlands

Abstract

AbstractIn topology optimization of transient problems, memory requirements and computational costs often become prohibitively large due to the backward‐in‐time adjoint equations. Common approaches such as the Checkpointing (CP) and Local‐in‐Time (LT) algorithms reduce memory requirements by dividing the temporal domain into intervals and by computing sensitivities on one interval at a time. The CP algorithm reduces memory by recomputing state solutions instead of storing them. This leads to a significant increase in computational cost. The LT algorithm introduces approximations in the adjoint solution to reduce memory requirements and leads to a minimal increase in computational effort. However, we show that convergence can be hampered using the LT algorithm due to errors in approximate adjoints. To reduce memory and/or computational time, we present two novel algorithms. The hybrid Checkpointing/Local‐in‐Time (CP/LT) algorithm improves the convergence behavior of the LT algorithm at the cost of an increased computational time but remains more efficient than the CP algorithm. The Parallel‐Local‐in‐Time (PLT) algorithm reduces the computational time through a temporal parallelization in which state and adjoint equations are solved simultaneously on multiple intervals. State and adjoint fields converge concurrently with the design. The effectiveness of each approach is illustrated with two‐dimensional density‐based topology optimization problems involving transient thermal or flow physics. Compared to the other discussed algorithms, we found a significant decrease in computational time for the PLT algorithm. Moreover, we show that under certain conditions, due to the use of approximations in the LT and PLT algorithms, they exhibit a bias toward designs with short characteristic times. Finally, based on the required memory reduction, computational cost, and convergence behavior of optimization problems, guidelines are provided for selecting the appropriate algorithms.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3