Kinetic study of the free‐radical polymerization of vinyl acetate in the presence of deuterated chloroform by 1H‐NMR spectroscopy

Author:

Semsarzadeh Mohammad Ali,Abdollahi Mahdi

Abstract

AbstractThe free‐radical polymerization of vinyl acetate was performed in the presence of deuterated chloroform (CDCl3) as a chain‐transfer agent (telogen) and 2,2′‐azobisisobutyronitrile as an initiator. The effects of the initiator and solvent concentrations (or equivalent monomer concentration) and the reaction temperature on the reaction kinetics were studied by real‐time 1H‐NMR spectroscopy. Data obtained from analysis of the 1H‐NMR spectra were used to calculate some kinetic parameters, such as the initiator decomposition rate constant (kd), kp(f/kt)1/2 ratio (where kp is the average rate constant for propagation, f is the initiator efficiency, and kt is the average rate constant for termination), and transfer constant to CDCl3 (C). The results show that kd and kp(f/kt)1/2 changed significantly with the solvent concentration and reaction temperature, whereas they remained almost constant with the initiator concentration. C changed only with the reaction temperature. Attempts were made to explain the dependence of kp(f/kt)1/2 on the solvent concentration. We concluded from the solvent‐independent C values that the solvent did not have any significant effect on the kp values. As a result, changes in the kp(f/kt)1/2 values with solvent concentration were attributed to the solvent effect on the f and/or kt values. Individual values of f and kt were estimated, and we observed that both the f and kt values were dependent on the solvent (or equivalent monomer) concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3