Chemical fingerprinting, antimicrobial, antioxidant, anti‐inflammatory, and anticancer potential of greenly synthesized silver nanoparticles from pistachio (Pistacia vera) nuts and senna (Cassia angustifolia Vahl.) leaves

Author:

Irshad Saba1ORCID,Iftikhar Sabahat1,Riaz Muhammad2ORCID,Mahmood Azra3,Mushtaq Afaq3,Saleem Yasar4,Shamim Rahat5,Akter Quzi Sharmin6

Affiliation:

1. School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan

2. Department of Allied Health Sciences University of Sargodha Sargodha Pakistan

3. Centre for Excellence in Molecular Biology University of the Punjab Lahore Pakistan

4. Food and Biotechnology Research Centre, PCSIR Labs Complex Lahore Pakistan

5. Punjab University College of Pharmacy (PUCP) University of the Punjab Lahore Pakistan

6. Department of Genetics and Animal Breeding, Faculty of Animal Science and Veterinary Medicine Patuakhali Science and Technology University Patuakhali Bangladesh

Abstract

AbstractThere is a growing interest in standardizing the biocompatible, cost‐effective, and eco‐friendly manufacturing techniques for metallic nanostructures due to their widespread applications in the industrial and medical sectors. In recent decades, green synthesis has been proven as the most suitable technique for synthesizing metal nanoparticles. The present research study investigates the use of Cassia angustifolia (senna) leaves and Pistacia vera (Pistachio) nuts to prepare crude aqueous extracts, ethanolic extracts, and biogenic silver nanoparticles (AgNPs). The prepared aqueous extracts were used as reducing, stabilizing, and capping agents for the production of silver nanoparticles. These AgNPs were characterized by scanning electron microscopy (SEM), Fourier‐transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV–Vis) spectroscopy. The outcomes validated the formation of stable AgNPs with bioactive functional components. In vitro antibacterial, anticancer, anti‐inflammatory, and antioxidant potentials were assessed by Kirby–Bauer disk diffusion test, MIC test, MBC test, MTT assay, BSA denaturation inhibition assay, and DPPH antioxidant assay, respectively. Results confirmed that the tested plant extract possesses a variety of bioactive compounds with various biological activities and is therapeutically effective. These findings verified that C. angustifolia and P. vera are promising bioresources for the synthesis of therapeutic extracts and nanostructures with commendable therapeutic potency.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3