Mechanobiology of bacterial biofilms: Implications for orthopedic infection

Author:

Blondel Margaux1,Machet Camille2,Wildemann Britt3ORCID,Abidine Yara4,Swider Pascal4ORCID

Affiliation:

1. Small Animal Surgery Department Lyon University, VetAgro Sup Marcy l'Etoile France

2. National Veterinary School of Toulouse Toulouse France

3. Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery Jena University Hospital, Friedrich Schiller University Jena Jena Germany

4. Institut de Mécanique des Fluides (IMFT) CNRS & Toulouse University Toulouse France

Abstract

AbstractPostoperative bacterial infections are prevalent complications in both human and veterinary orthopedic surgery, particularly when a biofilm develops. These infections often result in delayed healing, early revision, permanent functional loss, and, in severe cases, amputation. The diagnosis and treatment pose significant challenges, and bacterial biofilm further amplifies the therapeutic difficulty as it confers protection against the host immune system and against antibiotics which are usually administered as a first‐line therapeutic option. However, the inappropriate use of antibiotics has led to the emergence of numerous multidrug‐resistant organisms, which largely compromise the already imperfect treatment efficiency. In this context, the study of bacterial biofilm formation allows to better target antibiotic use and to evaluate alternative therapeutic strategies. Exploration of the roles played by mechanical factors on biofilm development is of particular interest, especially because cartilage and bone tissues are reactive environments that are subjected to mechanical load. This review delves into the current landscape of biofilm mechanobiology, exploring the role of mechanical factors on biofilm development through a multiscale prism starting from bacterial microscopic scale to reach biofilm mesoscopic size and finally the macroscopic scale of the fracture site or bone–implant interface.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3