Affiliation:
1. State Key Laboratory of Powder Metallurgy Central South University Changsha China
2. School of Materials and Metallurgy Inner Mongolia University of Science and Technology Baotou China
3. Beihang University Beijing China
Abstract
AbstractLithium metal is a promising electrode material for next‐generation high‐energy‐density rechargeable batteries with its high theoretical capacity (3860 mAh g−1) and low standard electrode potential (−3.04 V vs. SHE). However, the special physicochemical properties of lithium metal, including low tensile strength, viscoplastic creep, and high reactivity hinder the processing and preparation of lithium strips toward ultrathin thickness (≤20 μm). Developing new matrixes, interfaces, and processing methods can be promising for overcoming these problems. This review summarizes the physicochemical properties of lithium metal and the design principles for preparing the ultrathin Li metal, and concludes the recent development in this field from the perspective of processing design, and proposes to provide in‐depth understanding of reliable fabrication of ultrathin lithium metal strips, and prospects the challenges and opportunities of ultrathin‐scale preparation and processing of lithium metal.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献