The Role of Metal Halides in Enhancing the Dehydration of Xylose to Furfural

Author:

Enslow Kristopher R.,Bell Alexis T.

Abstract

AbstractThe dehydration of xylose yields furfural, a product of considerable value as both a commodity chemical and a platform for producing a variety of fuels. When xylose is dehydrated in aqueous solution in the presence of a Brønsted acid catalyst, humins are formed via complex side processes that ultimately result in a loss in the yield of furfural. Such degradative processes can be minimized via the in situ extraction of furfural into an organic solvent. The partitioning of furfural from water into a given extracting solvent can be enhanced by the addition of salt to the aqueous phase, a process that increases the thermodynamic activity of furfural in water. Although the thermodynamics of using salts to improve liquid–liquid extraction are well studied, their impact on the kinetics of xylose dehydration catalyzed by a Brønsted acid are not. The aim of the present study was to understand how metal halide salts affect the mechanism and kinetics of xylose dehydration in aqueous solution. We found that the rate of xylose consumption is affected by both the nature of the salt cation and anion, increasing in the order no salt<K+<Na+<Li+ and no salt<Cl<Br<I. Furfural selectivity increases similarly with respect to metal cations, but in the order no salt<I<Br<Cl for halide anions. Multinuclear NMR was used to identify the interactions of cations and anions with xylose and to develop a model for explaining xylose‐metal halide and water‐metal halide interactions. The results of these experiments coupled with 18O‐labeling experiments indicate that xylose dehydration is initiated by protonation at the C1OH and C2OH sites, with halide anions acting to stabilize critical intermediates. The means by which metal halides affect the formation of humins was also investigated, and the role of cations and anions in affecting the selectivity to humins is discussed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3