In‐vitro puncture experiment using alligator teeth tracks the formation of dental microwear and its association with hardness of the diet

Author:

Usami K.1,Kubo M. O.1ORCID

Affiliation:

1. Department of Natural Environmental Studies, Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba Japan

Abstract

AbstractWith the development of dental microwear texture analysis (DMTA), there has been an increasing application of DMTA for dietary estimation in extant and fossil reptiles, including dinosaurs. While numerous feeding experiments exist for herbivorous mammals, knowledge remains limited for carnivorous reptiles. This study aimed to qualitatively and quantitatively evaluate the formation of dental microwear through repeated puncture of different types of food using isolated teeth from the American alligator (Alligator mississippiensis) in an in‐vitro experiment. Eleven isolated teeth were mounted on a force gauge, and each tooth sample was repeatedly punctured 200 times into sardines (tooth sample size, N = 6) and crayfish (N = 5). The tooth surfaces were scanned using a confocal laser microscope before, during, and after the experiment to track changes in the tooth surface. Additionally, the maximum force during puncture was measured with the force gauge. Examination of surface roughness parameters before and after the experiment revealed a significant increase at the tooth apexes for both types of food. Furthermore, the trials with crayfish increased microwear depth and density more than the sardine trials. There was a significant positive correlation between the total force experienced by each tooth and the changes in surface roughness parameters in the crayfish trials, indicating that greater force results in more dental wear. The findings of this study are significant as they complement existing feeding experiments and comparative studies of wild species with different diets, and they demonstrate the effectiveness of experimental approaches in understanding the formation mechanisms of dental microwear.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3