The d‐band energy level splitting of ferric group (Fe, Co, Ni) metals drives the adsorption‐conversion of polysulfides

Author:

Li Tong1,Sun Yajie1,Shi Kaixiang123ORCID,Qin Weilun4,Chen Hangyi4,Li Junhao5,Zheng Yuying1,Liu Quanbing12ORCID,Liang Zhenxing5

Affiliation:

1. Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China

2. Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China

3. Guangdong Provincial Key Laboratory of Fuel Cell Technology Guangzhou China

4. Guangzhou Zhixin High School Guangzhou China

5. Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China

Abstract

AbstractThe notorious lithium polysulfides (LiPSs) shuttle effect, which results in low capacity, subpar rate performance, and quick capacity deterioration, has severely restricted the practical applications of lithium sulfur (Li‐S) batteries. Therefore, it is very important for modified materials to promote thermodynamics and redox kinetics in the entrapping‐conversion process of polysulfides. Density functional theory (DFT) calculations show that ferric group (Fe, Co, Ni) transition metals not only provide moderate binding contacts with LiPSs but also act as an active catalyst in the spontaneous and sequential lithiation of S8 to Li2S by d‐band energy level splitting, and quick migration of Li ions can be operated on their surface, enhancing the utilization of LiPSs. Experimentally, felicitously‐fabricated ferric group (Fe, Co, Ni) transition metals encapsulated in nitrogen‐doped carbon nanotubes (M@NCNT) electrocatalysts were introduced into Li‐S batteries via separator functionalization. Actually, the experiments demonstrated that the excellent shuttle effect hindering was enabled. Consistent with theoretical predictions, Li‐S batteries with Ni@NCNT modified separators had significantly improved rate capacity and cycling stability. The cells with Ni@NCNT were able to achieve a high initial discharge capacity of 1035 mAh g−1 and a capacity retention rate of 70% at 500 discharges at 1.0 C with a 0.060% capacity decay each cycle, performing considerable cycle‐life with state‐of‐the‐art separators. Our work demonstrated a realistic separator‐modified strategy of d‐band energy level splitting from ferric group metals for high‐performance and long‐life Li‐S batteries, further propelling Li‐S battery commercialization.

Funder

Special Project for Research and Development in Key areas of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3