Synthetic Evolution of a Supramolecular Harpooning Mechanism to Immobilize Vesicles at Antifouling Interfaces

Author:

Englert Jenny12ORCID,Witzdam Lena134ORCID,Söder Dominik13ORCID,Garay‐Sarmiento Manuela12ORCID,Joseph Anton13ORCID,Wagner Anna M.13ORCID,Rodriguez‐Emmenegger Cesar1456ORCID

Affiliation:

1. DWI‐Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany

2. Chair of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany

3. Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 52074 Aachen Germany

4. Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Carrer de Baldiri Reixac, 10, 12 Barcelona 08028 Spain

5. Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys 23 Barcelona 08010 Spain

6. Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine The Institute of Health Carlos III Madrid 28029 Spain

Abstract

AbstractThe immobilization of vesicles has been conceptualized as a method to functionalize biointerfaces. However, the preservation of their integrity post immobilization remains a considerable challenge. Interfacial interactions can cause vesicle rupture upon close surface contact and non‐specific protein adsorption impairing surface functions. To date, immobilization of vesicles has relied solely on either entrapment or prior modification of vesicles, both of which require laborious preparation and limit their applications. This work develops a bioinspired strategy to pin vesicles without prior modification while preserving their intact shape. This work introduces antifouling diblock copolymers and ultrathin surface‐attached hydrogels containing a brush‐like interface consisting of a bottle brush copolymer of N‐(2‐hydroxypropyl) methacrylamide (HPMA) and N‐(3‐methacrylamidopropyl)‐N,N‐dimethyldodecan‐1‐aminiumiodide (C12+). The presence of positive charges generates an attractive force that pulls vesicles toward the surface. At the surface, the amphiphilic properties of the combs facilitate their insertion into the membrane, mimicking the harpooning mechanism observed in antimicrobial peptides. Importantly, the antifouling poly(HPMA) backdrop serves to safeguard the vesicles by preventing deformation and breakage. Using a combination of thermodynamic analysis, surface plasmon resonance, and confocal laser scanning microscopy, this work demonstrates the efficiency of this biomimetic system to capture vesicles while maintaining an antifouling interface necessary for bioapplications.

Funder

Bundesministerium für Bildung und Forschung

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3