Mixed Hyperbranched/Triblock Copolymer Micelle Assemblies: Physicochemical Properties and Potential for Drug Encapsulation

Author:

Gerardos Angelica Maria1,Balafouti Anastasia1,Pispas Stergios1ORCID

Affiliation:

1. Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Avenue Athens 11635 Greece

Abstract

AbstractMixed micelles have numerous advantages while requiring little to no effort in preparation. This study aims to produce mixed micelle nanostructures from a linear triblock copolymer and a hyperbranched random copolymer, and is able to be loaded with the weakly water‐soluble drugs curcumin and indomethacin. Different preparation techniques are employed to produce mixed micelles comprised of Pluronic F127 block copolymer, and hyperbranched poly[(ethylene glycol) methyl ether methacrylate‐co‐lauryl methacrylate], H‐[P(OEGMA‐co‐LMA)], copolymer. Few studies have dabbled in these types of coassemblies, which provides insight into how structural differences of each copolymer can affect the formation of micelles. To determine the properties of the emerging nanostructures in aqueous environments, including their size, homogeneity, and surface charge, different physicochemical techniques are used, such as light scattering and spectroscopic methods. The results reveal that the copolymers combine, and spontaneously self‐assemble into mixed micelle‐like nanostructures in aqueous environments, whereas both systems of neat and drug‐loaded nanostructures exhibit desirable properties such as small average micelle hydrodynamic radii and low size polydispersity indices. The nanostructures that result from the effective encapsulation of curcumin exhibit outstanding stability over 169 days. The fluorescent qualities of curcumin persist after encapsulation, making the novel nanostructures excellent candidates for bioimaging applications.

Publisher

Wiley

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3