Affiliation:
1. Institute of Polymer Materials and Technology Almaty 050019 Kazakhstan
2. Satbayev University Almaty 050013 Kazakhstan
3. Department of Chemistry and Chemical Technology Al‐Farabi Kazakh National University Almaty 050040 Kazakhstan
4. Kazakh Research Institute of Oncology and Radiology Almaty 050022 Kazakhstan
5. Reading School of Pharmacy University of Reading Whiteknights Reading RG6 6DX UK
6. Department of Chemistry University of Helsinki Helsinki 00014 Finland
Abstract
AbstractPhotothermal therapy (PTT) is recognized as an effective tool for the treatment of cancer and it has attracted considerable attention of scientists. In this work, gold nanospheres (AuNSs) and gold nanorods (AuNRs) stabilized using poly(N‐vinylpyrrolidone) (PVP), pristine gellan gum (PGG), and poly(2‐ethyl‐2‐oxazoline)‐grafted gellan gum (GG‐g‐PEtOx) are synthesized and evaluated as PTT agents in Ehrlich cancer cells. The physicochemical characteristics of these AuNSs and AuNRs, including their surface plasmon resonance absorption spectra, size, zeta potential, and aspect ratio are studied using UV–vis‐spectroscopy, dynamic light scattering, zeta potential, transmission electron microscopy, and optical microscopy techniques. The polymer‐protected AuNSs exhibit light‐to‐heat conversion, raising the temperature from 37 to 43 °C when irradiated using a visible light source. In the case of AuNSs, considerable damage to Ehrlich cancer cells is observed following irradiation and 40 days of examination. However, with regard to AuNSs, the damage to Ehrlich cancer cells is slightly lower than observed in AuNRs. In vivo experiments demonstrate that laser irradiation of tumors in mice after injecting AuNSs leads to a statistically significant decrease in tumor size as compared to those not irradiated and the control samples.
Funder
Ministry of Education and Science of the Republic of Kazakhstan