Experimental and statistical damage analysis in milling of S2‐glass fiber/epoxy and basalt fiber/epoxy composites

Author:

Sayin Ahmed Cagri1ORCID,Danisman Sengul2ORCID,Ersoy Emin2ORCID,Yilmaz Cagatay1ORCID,Kesriklioglu Sinan1ORCID

Affiliation:

1. Department of Mechanical Engineering Abdullah Gul University Kayseri Turkey

2. Department of Mechanical Engineering Erciyes University Kayseri Turkey

Abstract

AbstractS2‐glass fiber reinforced plastics (S2‐GFRP) and basalt fiber reinforced plastics (BFRP) have emerged as crucial materials due to their exceptional mechanical properties, and milling of composite materials plays an important role in achieving desired properties. However, they have proven challenges due to relative inhomogeneity compared with metals, resulting unpredictability in quality of milling operations. The objective of this work is to investigate the effect of cutting parameters, tool geometry and tool surface materials on the surface quality of composites using burrs as a metric. S2‐GFRP and BFRP composites were produced by the vacuum infusion method. Helical and straight flute end mills were manufactured from high‐speed steel (HSS) and carbide rounds, and half of them were coated with titanium nitride using reactive magnetron sputtering technique. Taguchi L18 orthogonal array is used to determine the effect of tool material, tool angle, coating, cutting direction, spindle speed, and feed rate on the machining quality of S2‐GFRPs and BFRPs with respect to burr formations. Milling experiments were conducted under dry conditions and then the burrs were imaged to calculate the total area and length. Statistical analysis was also performed to optimize the machining parameters and tool type for ensuring the structural integrity and performance of the final composite parts. The results showed that the selection of tool material has the most significant impact on the burr area and length of the machined surface. The novel image analysis allows to analyze the extent of the burr size with a desirable operation speed for industrial applications.Highlights Aerospace grade S2‐Glass (S2‐GFRP) and basalt fiber reinforced plastics (BFRP) were manufactured. Carbide and HSS end mills were fabricated and coated with titanium nitride protective layer. FRPs were machined at various process parameters designed by Taguchi method. Distinctive image processing was firstly used to compute milling induced Burr area and length. Statistical analysis was performed to quantify the contribution of parameters and optimize milling.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3