Emergence of terpene chemical communication in insects: Evolutionary recruitment of isoprenoid metabolism

Author:

Rebholz Zarley1,Shewade Leena2,Kaler Kylie1,Larose Hailey1,Schubot Florian1,Tholl Dorothea1,Morozov Alexandre V.3,O’Maille Paul E.2ORCID

Affiliation:

1. Department of Biological Sciences, Virginia Tech, Latham Hall, 220 Ag Quad Lane Blacksburg Virginia 24061 USA

2. SRI International, Biosciences Division Menlo Park California 92122 USA

3. Department of Physics & Astronomy and Center for Quantitative Biology, 136 Frelinghuysen Road Rutgers University Piscataway New Jersey 08854 USA

Abstract

AbstractInsects have evolved a chemical communication system using terpenoids, a structurally diverse class of specialized metabolites, previously thought to be exclusively produced by plants and microbes. Gene discovery, bioinformatics, and biochemical characterization of multiple insect terpene synthases (TPSs) revealed that isopentenyl diphosphate synthases (IDS), enzymes from primary isoprenoid metabolism, are their likely evolutionary progenitors. However, the mutations underlying the emergence of the TPS function remain a mystery. To address this gap, we present the first structural and mechanistic model for the evolutionary emergence of TPS function in insects. Through identifying key mechanistic differences between IDS and TPS enzymes, we hypothesize that the loss of isopentenyl diphosphate (IPP) binding motifs strongly correlates with the gain of the TPS function. Based on this premise, we have elaborated the first explicit structural definition of isopentenyl diphosphate‐binding motifs (IBMs) and used the IBM definitions to examine previously characterized insect IDSs and TPSs and to predict the functions of as yet uncharacterized insect IDSs. Consistent with our hypothesis, we observed a clear pattern of disruptive substitutions to IBMs in characterized insect TPSs. In contrast, insect IDSs maintain essential consensus residues for binding IPP. Extending our analysis, we constructed the most comprehensive phylogeny of insect IDS sequences (430 full length sequences from eight insect orders) and used IBMs to predict the function of TPSs. Based on our analysis, we infer multiple, independent TPS emergence events across the class of insects, paving the way for future gene discovery efforts.

Funder

National Science Foundation

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3