Nowcasting Norwegian household consumption with debit card transaction data

Author:

Aastveit Knut Are12,Fastbø Tuva Marie1,Granziera Eleonora1,Paulsen Kenneth Sæterhagen1,Torstensen Kjersti Næss3

Affiliation:

1. Norges Bank Oslo Norway

2. BI Norwegian Business School Oslo Norway

3. Norwegian Ministry of Finance Oslo Norway

Abstract

SummaryWe use a novel data set covering all domestic debit card transactions in physical terminals by Norwegian households, to nowcast quarterly Norwegian household consumption. These card payments data are not subject to revisions and are available weekly without delays, providing a valuable early indicator of household spending. To account for mixed‐frequency data, we estimate various quantile mixed‐data sampling (QMIDAS) regressions using predictors sampled at monthly and weekly frequency. We evaluate both point and density forecasting performance over the sample 2011Q4–2019Q4. Our results show that MIDAS regressions with debit card transactions data improve both point and density forecast accuracy over competitive standard benchmark models that use alternative high‐frequency predictors. Finally, we illustrate the benefits of using the card payments data by obtaining a timely and relatively accurate nowcast of 2020Q1, a quarter characterized by heightened uncertainty due to the COVID‐19 pandemic. We further show how debit card data have been useful in nowcasting consumption during the four subsequent quarters.

Publisher

Wiley

Reference72 articles.

1. Forecasting unemployment insurance claims in realtime with Google Trends;Aaronson D.;International Journal of Forecasting,2022

2. Density forecasts with MIDAS models;Aastveit K. A.;Journal of Applied Econometrics,2017

3. Aastveit K. A. Gerdrup K. &Jore A. S.(2011).Short‐term forecasting of GDP and inflation in real time: Norges Bank's system for averaging models. (2011/9): Norges Bank.

4. Nowcasting GDP in real time: A density combination approach;Aastveit K. A.;Journal of Business and Economic Statistics,2014

5. Combined density nowcasting in an uncertain economic environment;Aastveit K. A.;Journal of Business & Economic Statistics,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3