Phenomenological modeling of fiber‐reinforced elastomeric isolators at multiple lateral deformation levels

Author:

Montalto Eduardo J.1ORCID,Konstantinidis Dimitrios1ORCID,Ankem Neerav M.1

Affiliation:

1. Department of Civil and Environmental Engineering University of California Berkeley California USA

Abstract

AbstractUnbonded fiber‐reinforced elastomeric isolators (FREIs) are a cost‐effective seismic isolation technology that uses lightweight fiber‐fabric reinforcement and forgoes the attachment plates connecting the isolators to the supports. These devices exhibit a complex nonlinear mechanical behavior under lateral deformation, which has typically been represented by uniaxial phenomenological models. In this paper, a new model, called Pivot Bouc–Wen model, is proposed to address the shortcomings of existing numerical models and obtain a better prediction of the response over the whole range of motion. The model has been formulated with the objective of providing (a) improved interpretability of the model parameters, (b) adequate energy dissipation prediction at multiple deformation levels, and (c) stable response at large deformations. The model combines a nonlinear elastic spring and a Bouc–Wen element with a modified pivot hysteresis rule to capture the lateral response of the isolators at different deformation amplitudes. Initial values for the model parameters are recommended based on existing analytical formulations of the quasi‐static lateral response of FREIs and data corresponding to 36 cyclic tests from 12 different experimental programs. The proposed and existing models are compared in their ability to predict the lateral cyclic test results from a previous experimental study. The models are further compared via response history analyses of idealized one, two, three and four‐story base‐isolated shear buildings subjected to 30 ground motions at different intensity levels. The results highlight the importance of capturing the hysteretic response of the isolators at multiple deformation levels and not only at the maximum expected displacement.

Publisher

Wiley

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3