Advanced three‐dimensional in vitro liver models to study the activity of anticancer drugs

Author:

Zuchowska Agnieszka1ORCID,Frojdenfal Sonia1,Trzaskowski Maciej2,Jastrzebska Elzbieta1

Affiliation:

1. Faculty of Chemistry Warsaw University of Technology Warszawa Poland

2. Centre for Advanced Materials and Technologies CEZAMAT Warsaw University of Technology Warszawa Poland

Abstract

AbstractThe liver is one of the most important organs in the human body. It performs many important functions, including being responsible for the metabolism of most drugs, which is often associated with its drug‐induced damage. Currently, there are no ideal pharmacological models that would allow the evaluation of the effect of newly tested drugs on the liver in preclinical studies. Moreover, the influence of hepatic metabolism on the effectiveness of the tested drugs is rarely evaluated. Therefore, in this work we present an advanced model of the liver, which reflects most of the morphologically and metabolically important features of the liver in vivo, namely: three‐dimensionality, cellular composition, presence of extracellular matrix, distribution of individual cell types in the structure of the liver model, high urea and albumin synthesis efficiency, high cytochrome p450 activity. In addition, the work, based on the example of commonly used anticancer drugs, shows how important it is to take into account hepatic metabolism in the effective assessment of their impact on the target organ, in this case cancer. In our research, we have shown that the most similar to liver in vivo are 3D cellular aggregates composed of three important liver cells, namely hepatocytes (HepG2), hepatic stellate cells (HSCs), and hepatic sinusoidal endothelial cells (HSECs). Moreover, we showed that the cells in 3D aggregate structure need time (cell–cell interactions) to improve proper liver characteristic. The triculture model additionally showed the greatest ability to metabolize selected anticancer drugs.

Funder

Wydzial Chemiczny, Politechniki Warszawskiej

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3