Reconstruction of tracheal window‐shape defect by 3D printed polycaprolatone scaffold coated with Silk Fibroin Methacryloyl

Author:

Shan Yibo123ORCID,Shen Zhiming123,Lu Yi123,Zhu Jianwei123,Sun Fei123,Chen Wenxuan123,Yuan Lei123,Shi Hongcan123

Affiliation:

1. Clinical Medical College Yangzhou University Yangzhou China

2. Institute of Translational Medicine Medical College Yangzhou University Yangzhou China

3. Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases Yangzhou University Yangzhou China

Abstract

AbstractIn this study, we aimed to utilize autologous tracheal epithelia and BMSCs as the seeding cells, utilize PCL coated with SilMA as the hybrid scaffold to carry the cells and KGN, which can selectively stimulate chondrogenic differentiation of BMSCs. This hybrid tracheal substitution was carried out to repair the tracheal partial window‐shape defect. Firstly, SilMA with the concentration of 10%, 15% and 20% was prepared, and the experiment of swelling and degradation was performed. With the increase of the concentration, the swelling ratio of SilMA decreased, and the degradation progress slowed down. Upon the result of CCK‐8 test and HE staining of 3D co‐culture, the SilMA with concentration of 20% was selected. Next, SilMA and the cells attached to SilMA were characterized by SEM. Furthermore, in vitro cytotoxicity test shows that 20% SilMA has good cytocompatibility. The hybrid scaffold was then made by PCL coated with 20% SilMA. The mechanical test shows this hybrid scaffold has better biomechanical properties than native trachea. In vivo tracheal defect repair assays were conducted to evaluate the effect of the hybrid substitution. H&E staining, IHC staining and IF staining showed that this hybrid substitution ensured the viability, proliferation and migration of epithelium. However, it is sad that the results of chondrogenesis were not obvious. This study is expected to provide new strategies for the fields of tracheal replacement therapy needing mechanical properties and epithelization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3