Novel calibration design improves knowledge transfer across products for the characterization of pharmaceutical bioprocesses

Author:

Helleckes Laura M.12ORCID,Wirnsperger Claus3,Polak Jakub3,Guillén‐Gosálbez Gonzalo4,Butté Alessandro34,von Stosch Moritz3

Affiliation:

1. Institute of Bio‐ and Geosciences, IBG‐1: Biotechnology Forschungszentrum Jülich GmbH Jülich Germany

2. Institute of Biotechnology RWTH Aachen University Aachen Germany

3. DataHow AG Zurich Switzerland

4. Department of Chemistry and Applied Biosciences Institute for Chemical and Bioengineering ETH Zurich Zurich Switzerland

Abstract

AbstractModern machine learning has the potential to fundamentally change the way bioprocesses are developed. In particular, horizontal knowledge transfer methods, which seek to exploit data from historical processes to facilitate process development for a new product, provide an opportunity to rethink current workflows. In this work, we first assess the potential of two knowledge transfer approaches, meta learning and one‐hot encoding, in combination with Gaussian process (GP) models. We compare their performance with GPs trained only on data of the new process, that is, local models. Using simulated mammalian cell culture data, we observe that both knowledge transfer approaches exhibit test set errors that are approximately halved compared to those of the local models when two, four, or eight experiments of the new product are used for training. Subsequently, we address the question whether experiments for a new product could be designed more effectively by exploiting existing knowledge. In particular, we suggest to specifically design a few runs for the novel product to calibrate knowledge transfer models, a task that we coin calibration design. We propose a customized objective function to identify a set of calibration design runs, which exploits differences in the process evolution of historical products. In two simulated case studies, we observed that training with calibration designs yields similar test set errors compared to common design of experiments approaches. However, the former requires approximately four times fewer experiments. Overall, the results suggest that process development could be significantly streamlined when systematically carrying knowledge from one product to the next.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3