A prognostic model for hepatocellular carcinoma patients based on polyunsaturated fatty acid‐related genes

Author:

Lin Yun1ORCID,Li Ruihao1,Li Tong1,Zhao Wenrong1,Ye Qianling1,Dong Chunyan1,Gao Yong1

Affiliation:

1. Department of Oncology, Shanghai East Hospital, School of Medicine Tongji University Shanghai People's Republic of China

Abstract

AbstractObjectivePolyunsaturated fatty acids (PUFAs) have attracted increasing attention for their role in liver cancer development. The objective of this study is to develop a prognosis prediction model for patients with liver cancer based on PUFA‐related metabolic gene characteristics.MethodTranscriptome data and clinical data were obtained from public databases, while gene sets related to PUFAs were acquired from the gene set enrichment analysis (GSEA) database. Univariate Cox analysis was conducted on the training set, followed by LASSO logistic regression and multivariate Cox analysis on genes with p < .05. Subsequently, the stepwise Akaike information criterion method was employed to construct the model. The high‐ and low‐risk groups were divided based on the median score, and the model's survival prediction ability, diagnostic efficiency, and risk score distribution of clinical features were validated. The above procedures were also validated in the validation set. Immune infiltration levels were evaluated using four algorithms, and the immunotherapeutic potential of different groups was explored. Significant enrichment pathways among different groups were selected based on the GSEA algorithm, and mutation analyses were conducted. Nomogram prognostic models were constructed by incorporating clinical factors and risk scores using univariate and multivariate Cox regression analysis, validated through calibration curves and clinical decision curves. Additionally, sensitivity analysis of drugs was performed to screen potential targeted drugs.ResultsWe constructed a prognostic model comprising eight genes (PLA2G12A, CYP2C8, ABCCI, CD74, CCR7, P2RY4, P2RY6, and YY1). Validation across multiple datasets indicated the model's favorable prognostic prediction ability and diagnostic efficiency, with poorer grading and staging observed in the high‐risk group. Variations in mutation status and pathway enrichment were noted among different groups. Incorporating Stage, Grade, T.Stage, and RiskScore into the nomogram prognostic model demonstrated good accuracy and clinical decision benefits. Multiple immune analyses suggested greater benefits from immunotherapy in the low‐risk group. We predicted multiple targeted drugs, providing a basis for drug development.ConclusionOur study's multifactorial prognostic model across multiple datasets demonstrates good applicability, offering a reliable tool for personalized therapy. Immunological and mutation‐related analyses provide theoretical foundations for further research. Drug predictions offer important insights for future drug development and treatment strategies. Overall, this study provides comprehensive insights into tumor prognosis assessment and personalized treatment planning.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3