Low‐Temperature TiO2 Electron Transporting Layer for Planar Hole Transport Material‐Free Carbon Electrode‐CsFA‐Based Perovskite Solar Cells

Author:

Passatorntaschakorn Woraprom1,Khampa Warunee2,Musikpan Wongsathon2,Ngamjarurojana Athipong1,Gardchareon Atcharawon1,Ruankham Pipat134,Bhoomanee Chawalit1,Wongratanaphisan Duangmanee134ORCID

Affiliation:

1. Department of Physics and Materials Science Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand

2. Materials Science Research Center Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand

3. Thailand Center of Excellence in Physics (ThEP Center) Ministry of Higher Education, Science, Research and Innovation Bangkok 10400 Thailand

4. Research Unit for Development and Utilization of Electron Linear Accelerator and Ultrafast Infrared/Terahertz Laser Chiang Mai University Chiang Mai 50200 Thailand

Abstract

Carbon electrode‐based perovskite solar cells (C‐PSCs) without a hole transport material (HTM) are cost‐effective and exhibit impressive long‐term stability. The electron transporting layer (ETL) plays a crucial role in planar CsFA‐based HTM‐free C‐PSCs, serving as both an electron transporter and a hole barrier. Herein, the role of low‐TiO2 morphology and thickness on the performance of CsFA‐based HTM‐free C‐PSCs are addressed. Herein, the devices are fabricated with a simple structure fluorine‐doped tin oxide /TiO2 nanoparticles (TiO2 NPs)/Cs0.17FA0.83Pb(I0.83Br0.17)3/carbon, using low‐temperature processes (≤150 °C) under ambient air conditions. By optimizing TiO2 NP layer thickness via spin‐coating speed adjustments, the ETL's coverage and compactness are improved, enhancing the perovskite film's quality, crystallinity, and grain size. An optimal TiO2 ETL at 1500 rpm yields 10.80% efficiency and demonstrates exceptional stability, maintaining 80% efficiency over 120 days in an air environment without encapsulation. The enhancement in device performance is attributed to improved surface properties of the TiO2 NPs ETL, effectively reducing interfacial charge recombination. This straightforwardly supports the development of sustainable, commercial‐ready CsFA HTM‐free C‐PSCs.

Funder

Chiang Mai University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3