Smoothing and differentiation of data by Tikhonov and fractional derivative tools, applied to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye

Author:

Lemes Nelson H. T.1ORCID,Santos Taináh M. R.2,Tavares Camila A.2,Virtuoso Luciano S.3,Souza Kelly A. S.3,Ramalho Teodorico C.2

Affiliation:

1. Laboratory of Mathematical Chemistry, Institute of Chemistry Federal University of Alfenas Alfenas MG Brazil

2. Laboratory of Molecular Modeling, Department of Chemistry Federal University of Lavras Lavras MG Brazil

3. Laboratory of Colloid Chemistry, Institute of Chemistry Federal University of Alfenas Alfenas MG Brazil

Abstract

AbstractAll signals obtained as instrumental response of analytical apparatus are affected by noise, as in Raman spectroscopy. Whereas Raman scattering is an inherently weak process, the noise background may lead to misinterpretations. Although surface amplification of the Raman signal using metallic nanoparticles has been a strategy employed to partially solve the signal‐to‐noise problem, the preprocessing of Raman spectral data through the use of mathematical filters has become an integral part of Raman spectroscopy analysis. In this paper, a Tikhonov modified method to remove random noise in experimental data is presented. In order to refine and improve the Tikhonov method as a filter, the proposed method includes Euclidean norm of the fractional‐order derivative of the solution as an additional criterion in Tikhonov function. In the strategy used here, the solution depends on the regularization parameter, , and on the fractional derivative order, . As will be demonstrated, with the algorithm presented here, it is possible to obtain a noise‐free spectrum without affecting the fidelity of the molecular signal. In this alternative, the fractional derivative works as a fine control parameter for the usual Tikhonov method. The proposed method was applied to simulated data and to surface‐enhanced Raman scattering (SERS) spectra of crystal violet dye in Ag nanoparticles colloidal dispersion.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3