Bone marrow stromal cell‐derived exosomes improve oxidative stress and pyroptosis in doxorubicin‐induced myocardial injury in vitro by regulating the transcription of GSDMD through the PI3K‐AKT‐Foxo1 pathway

Author:

Zeng Hong1,Yang Yong2,Tou Fangfang3,Zhan Yuliang1,Liu Songtao1,Zou Pengtao1,Chen Yanmei1,Shao Liang1ORCID

Affiliation:

1. Department of Cardiology, Jiangxi Provincial People's Hospital The First Affiliated Hospital of Nanchang Medical College Nanchang Jiangxi People's Republic of China

2. Department of Cardiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei People's Republic of China

3. Jiangxi Provincial People's Hospital The First Affiliated Hospital of Nanchang Medical College Nanchang Jiangxi People's Republic of China

Abstract

AbstractObjectivesDoxorubicin (DOX) can contribute to severe myocardial injury, and bone marrow stromal cells (BMSC)‐exosomes (Exos) improves acute myocardial infarction. Hence, this research investigated whether BMSC‐Exos alleviated DOX‐induced myocardial injury.MethodsBMSC‐derived Exos were isolated and identified, and the optimal concentration of DOX was confirmed. H9C2 cells were treated with DOX and BMSC‐Exos or in combination with the protein kinase B (AKT) inhibitor. Reactive oxygen species (ROS) and JC‐1 were detected to assess oxidative stress (OS) and mitochondrial membrane damage, respectively. In addition, the expression of pyroptosis‐related molecules was measured. The expression of phosphatidylinositol 3 kinase (PI3K)‐AKT pathway‐related proteins and the phosphorylation and acetylation of forkhead box O1 (Foxo1) in the cell nucleus and cytoplasm were tested. Last, interactions between Foxo1 and gasdermin D (GSDMD) were assessed.ResultsBMSC‐Exo treatment increased viability and mitochondrial membrane potential and reduced lactic dehydrogenase release and ROS levels in DOX‐treated H9C2 cells. Furthermore, the addition of BMSC‐Exos suppressed DOX‐induced activation and upregulation of NLRP3 and apoptosis‐associated speck‐like protein containing A CARD (ASC) and in vitro cleavage of caspase‐1, GSDMD, interleukin (IL)‐1β, and IL‐18 proteins. Additionally, BMSC‐Exo treatment enhanced the expression of phosphorylated (p)‐PI3K, p‐AKT, and p‐mTOR in DOX‐treated H9C2 cells and the levels of phosphorylated Foxo1 in the cytoplasm of DOX‐treated H9C2 cells. Foxo1 was enriched in the promoter region of GSDMD. Moreover, the AKT inhibitor API‐2 annulled the effects of BMSC‐Exos on OS, pyroptosis, and Foxo1 phosphorylation in DOX‐treated H9C2 cells.ConclusionsBMSC‐Exos phosphorylated Foxo1 and inactivated Foxo1 transcription via the PI3K‐AKT pathway to diminish GSDMD expression, thus restraining DOX‐induced pyroptosis and OS of myocardial cells.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3