Boost Organic‐Silicon Hybrid Solar Cell Performances with a Facile and Cost‐Effective Sub‐3 nm Interface Control Method

Author:

Yang Yi123,Su Dan123,Jin Nan-Xi123,Liu Fenghua45,Zhang Xiao-Yang123,Xia Peng123,Song Yuan-Jun123,Zhou Huan-Li123,Wu Weiping45,Zhang Tong123ORCID

Affiliation:

1. Joint International Research Laboratory of Information Display and Visualization School of Electronic Science and Engineering Southeast University Nanjing 210096 China

2. Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education School of Instrument Science and Engineering Southeast University Nanjing 210096 China

3. Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology Southeast University Suzhou Campus Suzhou 215123 China

4. Laboratory of Thin Film Optics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

5. State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

Abstract

A facile and cost‐effective approach based on oxygen‐plasma treatment is developed for silicon‐organic hybrid solar cells. By precisely forming a sub‐3 nm SiOx layer at the silicon‐poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) interface with a 10 s oxygen‐plasma treatment, the power conversion efficiency is boosted from 0.02% to 8.18%, 409‐fold increase compared to solar cells with untreated silicon. Utilizing X‐ray photoelectron spectroscopy, Kelvin probe force microscopy, and density‐functional theory, the device physics and mechanisms are revealed from an atomic‐level perspective. The control of interface by oxygen‐plasma treatment reduces the surface work function of Si and introduces an electron barrier, facilitating the transfer of hole carriers from Si to organic materials while effectively blocking electron transmission. This mechanism proves to be highly beneficial in mitigating carrier recombination and promoting the separation of electrons and holes. This approach can be applied to interface optimization for high‐performance photovoltaic and other optoelectronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Chinese Academy of Sciences

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3