Comparative Raman spectroscopy of astrobiology relevant bio‐samples and planetary surface analogs under UV–VIS–IR excitation

Author:

Hanke Franziska1ORCID,Böttger Ute2,Pohl Andreas2ORCID,Irmscher Klaus3,Pavlov Sergey G.2

Affiliation:

1. Institut für Physik Humboldt‐Universität zu Berlin Berlin Germany

2. Institute of Optical Sensor Systems German Aerospace Center (DLR) Berlin Germany

3. Leibniz‐Institut für Kristallzüchtung Berlin Germany

Abstract

AbstractWe investigated the potential of a laser selection in the broad optical range, from ultraviolet through visible to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm) for combined analysis of Earth‐relevant extremophiles (Xanthoria elegans, Buellia frigida, and green alga of Circinaria gyrosa), carbohydrate molecules, as well as Mars and Moon surface regolith simulants as analog mineral mixtures (P‐MRS, S‐MRS, LRS, and JSC‐1). We show that the optimization of the laser photon energy provides (for at least one of the chosen excitation wavelengths) high‐end quality Raman spectra for each examined sample. In most cases, the infrared spectral range is advanced for biological samples, while an excitation in the visible and ultraviolet spectral range is often favorable or at least sufficient for accurate identification/resolution of mineral phases under the illuminated laser spot on the planetary surface simulants. Ultraviolet excitation does not always deliver significant contrast of the Raman Stokes responses to the induced photoluminescence in the studied biomolecules. Most prominent features in the Raman spectra of the biological samples are assigned to their specific pigments, also considered as biomolecular signatures of the extremophiles. The critical issue of specific advantages and limitations of each particular excitation source implies study for gaining scientific return from Raman spectroscopy for exobiological prospecting, for instance, the best trade between a single or dual excitation wavelength(s) for both biological and geological spectral data.

Publisher

Wiley

Subject

Spectroscopy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3