Noninvasive treatment of psoriasis and skin rejuvenation using an akermanite‐type narrowband emitting phosphor

Author:

Sharma Aachal A.1,Rakshita M.1,Pradhan Payal P.1,Prasad K. A. K. Durga1,Mishra Siju1,Jayanthi K.2,Haranath D.1ORCID

Affiliation:

1. Luminescence Materials and Devices (LMD) Group, Department of Physics National Institute of Technology Warangal Telangana India

2. Department of Physical and Chemical Sciences Sri Satya Sai University of Human Excellence Kalaburagi Karnataka India

Abstract

AbstractPsoriasis is a noncontagious, long‐lasting skin infection that affects many people around the world. Numerous therapeutic artificial treatments are available for the treatment of psoriasis, such as photodynamic therapy using broadband ultraviolet (UV) lamps, which have harmful effects on human skin. Similarly, the natural healing systems such as sunlight have a higher risk of sunburn and can cause dangerous forms of skin cancer. Significant light emission of a specific wavelength (in the UV range), and phosphor‐based devices demonstrate the effectiveness of treating psoriasis without damaging the skin. Gd3+‐doped calcium magnesium silicate [Ca2MgSi2O7:Gd3+,(CMS:Gd3+)] phosphor is one of the ideal phosphors that emit specific narrow UV wavelengths for curing psoriasis and is in great demand in the field of dermatology. Photoluminescence analysis at room temperature (~25°C) shows that the synthesized CMS:Gd3+ phosphor emits narrowband UV‐B light with a peak intensity at 314 nm. Comparative studies of the standard action spectrum of psoriasis with the emission spectrum of the CMS:Gd3+ phosphor show that the synthesized phosphor was the most suitable material for treating a variety of diseases, including psoriasis, vitiligo, type‐1 diabetes, dental disease, sleep and mood disorders, and other skin diseases.

Funder

Council of Scientific and Industrial Research, India

Publisher

Wiley

Subject

Chemistry (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3