Secretome mediated interactions between sensory neurons and breast cancer cells

Author:

Jerard Chinnu1ORCID,Madhusudanan Pallavi1,Swamy Aditi1,Ravikumar Karishma1,Shankarappa Sahadev A.1ORCID

Affiliation:

1. Center for Nanosciences & Molecular Medicine Amrita Vishwa Vidyapeetham Kochi Kerala India

Abstract

AbstractThe role of the nervous system in aiding cancer progression and metastasis is an important aspect of cancer pathogenesis. Interaction between cancer cells and neurons in an in vitro platform is a simple and robust method to further understand this phenomenon. In our study, we aimed to examine in vitro reciprocal effect between breast cancer cells and cancer‐sensitized peripheral primary sensory neurons. Secretome obtained from either cultured DRG neurons from tumor‐burdened rats, or MRMT1 breast cancer cells were used to study neuronal and cancer cell reciprocity. We utilized neurite analysis, modified cell migration assay and cell signaling pathway inhibitors to determine neurite growth patterns and cell migration in PC12/DRG neurons and MRMT1 cells, respectively. MRMT1 secretome was found to induce significant neurite outgrowth in PC12 and primary sensory neurons. Secretome‐induced neurite growth in PC12 cells was partly mediated by PI3K and ERK pathways, but not by adenylyl cyclase. Conversely, secretome from tumor‐sensitized sensory neuron cultures induced increased rate of migration in cultured MRMT1 cells. Results from our study provide additional support to the hypothesis that both breast cancer cells and nerve terminals secrete signaling messengers that have a reciprocal effect on each other.

Funder

Council of Scientific and Industrial Research, India

Department of Biotechnology, Ministry of Science and Technology, India

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Wiley

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3