(E)‐SIS3 suppressed osteosarcoma progression via promoting cell apoptosis, arresting cell cycle, and regulating the tumor immune microenvironment

Author:

Huang Zhen1,Zhang Chunlin1ORCID,Zhu Kunpeng1,Hu Jianping1,Xu Enjie1,Ma Xiaolong1,Wang Yongjie1,Zhu Yurun1,Zhu Jiazhuang1

Affiliation:

1. Department of Orthopaedic Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai China

Abstract

AbstractOsteosarcoma is a prevalent malignant bone tumor with a poor prognosis. Mothers against decapentaplegic homolog 3 (Smad3) present as a therapeutic target in antitumor treatment, whereas its functions in the osteosarcoma have not been well explored. In the current study, we aimed to investigate the effects of Smad3 in the progression of osteosarcoma. The tumor immune single‐cell hub 2 website was used for graph‐based visualization of Smad3 status in osteosarcoma single‐cell database. Western Blot was applied to detect the expression of Smad3 protein in cell lines. Colony formation and cell counting kit‐8 assays were used to evaluate cell proliferation. Transwell and wound healing assays were used to detect the migration and invasion abilities of cells. Cell apoptosis rates and cell cycle changes were explored by using flow cytometry analysis. The xenograft tumor growth model was applied to explore the effect in tumor growth after Smad3 blockage in vivo. Moreover, to confirm the potential mechanism of Smad3's effects on osteosarcoma, bioinformatics analysis was performed in TARGET‐Osteosarcoma and GSE19276 databases. Our study found that the Smad3 protein is overexpressed in 143B and U2OS cells, suppressing the expression of Smad3 protein in osteosarcoma cells by Smad3 target inhibitor (E)‐SIS3 or lentivirus can inhibit the proliferation, migration, invasion, promote cell apoptosis, arrest cell G1 cycle in osteosarcoma cells in vitro, and suppress tumor growth in vivo. Furthermore, the bioinformatics analysis demonstrated that high expression of Smad3 is closely associated with low immune status in TARGET‐Osteosarcoma and GSE19276 databases. Our study suggested that Smad3 could contribute positively to osteosarcoma progression via the regulation of tumor immune microenvironment, and Smad3 may represent as an valuable potential therapeutic target in osteosarcoma therapy.

Publisher

Wiley

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3