Affiliation:
1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
Abstract
AbstractSolid‐state batteries represent the future of energy storage technology, offering improved safety and energy density. Garnet‐type Li7La3Zr2O12 (LLZO) solid‐state electrolytes‐based solid‐state lithium batteries (SSLBs) stand out for their appealing material properties and chemical stability. Yet, their successful deployment depends on conquering interfacial challenges. This review article primarily focuses on the advancement of interfacial engineering for LLZO‐based SSLBs. We commence with a concise introduction to solid‐state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO‐based SSLBs. We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface. Subsequently, we delve into the latest advancements and strategies dedicated to overcoming these challenges, with designated sections on cathode and anode interface design. In the end, we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO‐based SSLBs, ultimately contributing to the development of safe and high‐performance energy storage solutions.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
China Academy of Engineering Physics
Natural Science Foundation of Shandong Province
Science and Technology Commission of Shanghai Municipality
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献