A technique for continuous crystallization of high‐quality ammonium polyvanadate: Crystallization mechanism and simulation of deflector tube baffle crystallizer

Author:

Jiang Ting1,Wang Jin23,Qin Yuhan1,Hu Chao1,Ma Yue1,Yang Lin1,Kong Xingjian1,Wei Linsen23

Affiliation:

1. School of Chemical Engineering Sichuan University Chengdu China

2. Pangang Group Vanadium Products Technology Co Xichang China

3. Pangang Group Vanadium & Titanium Resources Co Panzhihua China

Abstract

AbstractThis study introduces a novel technology for continuous vanadium precipitation, aiming to resolve issues such as poor stack density, small particle size, and irregular morphology of ammonium polyvanadate in traditional intermittent processes. In this research, we optimized the process parameters for continuous vanadium precipitation and investigated the mechanism of continuous ammonium polyvanadate crystallization using the focused beam reflectometer measurement. Results showed that small, flaky ammonium polyvanadate particles initially formed between 0 and 12 min. These particles subsequently interlayered and aggregated, resulting in larger particles from 13 to 23 min. By 24 to 60 min, a dynamic equilibrium was reached in crystal growth, aggregation, de‐embedding, and fragmentation. Kinetic analyses demonstrated that increasing the reaction temperature shifted crystal growth from surface reaction control to diffusion control. At higher temperatures, explosive nucleation of ammonium polyvanadate, crystal fragmentation, and dissolution occurred. By integrating the crystallization mechanism, we produced dense ellipsoidal ammonium polyvanadate particles with a stacking density of 0.772 g/cm3 and an average size of 107.04 μm under optimal conditions, achieving a vanadium precipitation rate exceeding 99.0%. Simulation results confirmed that the deflector tube baffle crystallizer enabled continuous crystallization of ammonium polyvanadate, ensuring an average residence time of over 10 min for particles of 50 and 100 μm, facilitating their growth to at least 100 μm. This research provides data and theoretical support for the industrial application of continuous vanadium precipitation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3