Toward Sustainable Haptics: A Wearable Vibrotactile Solar‐Powered System with Biodegradable Components

Author:

Arbaud Robin1,Najafi Maedeh2ORCID,Gandarias Juan M.1ORCID,Lorenzini Marta1ORCID,Paul Uttam C.2ORCID,Zych Arkadiusz2ORCID,Athanassiou Athanassia2ORCID,Cataldi Pietro2ORCID,Ajoudani Arash1ORCID

Affiliation:

1. Human‐Robot Interfaces and Interaction Istituto Italiano di Tecnologia Genoa Italy

2. Smart Materials Laboratory Istituto Italiano di Tecnologia Genoa Italy

Abstract

AbstractElectronics and mechatronics waste is an exponentially increasing environmental issue, especially for wearable devices, due to their widespread diffusion into society and short life cycle. To promote their enormous benefits (e.g., in assisting visually impaired individuals) in a sustainable way, biobased and/or biodegradable organic materials should be used instead of traditional components. This manuscript presents a multidisciplinary approach, which bridges materials science and mechatronics, to propose the first ECO‐friendly wearable vibroTACtile device (Eco‐Tac). The design of Eco‐Tac includes integration on a cotton t‐shirt through a novel biodegradable conductive ink forming electrical tracks, a flexible commercially available solar panel, and the vibrotactile haptic device itself. The ink comprises a green solvent, anisole, a soft polybutylene adipate terephthalate biodegradable binder, and conductive nanocarbon materials. The device case is a biodegradable biocomposite. As such, the feasibility of using a sustainable energy source to supply power to the device and the possibility of using biodegradable materials in its manufacturing are demonstrated. An experiment with 20 blindfolded subjects is conducted, reporting the device's potential for assistance in manipulation tasks. Overall, the results of this work represent the first significant step toward the creation of wearable and sustainable haptic devices with green electronics and mechatronics approaches.

Funder

H2020 European Research Council

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3