A Novel 3D‐Printed/Porous Conduit with Tunable Properties to Enhance Nerve Regeneration Over the Limiting Gap Length

Author:

Redolfi‐Riva Eugenio12ORCID,Pérez‐Izquierdo Míriam3,Zinno Ciro12,Contreras Estefania34,Rodríguez‐Meana Bruno35,Iberite Federica12,Ricotti Leonardo12,Micera Silvestro126ORCID,Navarro Xavier35ORCID

Affiliation:

1. The Biorobotic Institute Scuola Superiore Sant'Anna Piazza Martiri della Libertà 33 Pisa 56127 Italy

2. Department of Excellence in Robotics & AI Scuola Superiore Sant'Anna Piazza Martiri della Libertà 33 Pisa 56127 Italy

3. Department of Cell Biology, Physiology and Immunology Institute of Neuroscience Universitat Autònoma de Barcelona (UAB) Bellaterra 08193 Spain

4. Integral Service for Laboratory Animals (SIAL) Faculty of Veterinary Universitat Autònoma de Barcelona Bellaterra 08193 Spain

5. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid 28031 Spain

6. Bertarelli Foundation Chair in Translational Neuroengineering Centre for Neuroprosthetics and Institute of Bioengineering School of Engineering École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1007 Switzerland

Abstract

AbstractEngineered grafts constitute an alternative to autologous transplant for repairing severe peripheral nerve injuries. However, current clinically available solutions have substantial limitations and are not suited for the repair of long nerve defects. A novel design of nerve conduit is presented here, which consists of a chitosan porous matrix embedding a 3D‐printed poly‐ε‐caprolactone mesh. These materials are selected due to their high biocompatibility, safe degradability, and ability to support the nerve regeneration process. The proposed design allows high control over geometrical features, pores morphology, compression resistance, and bending stiffness, yielding tunable and easy‐to‐manipulate grafts. The conduits are tested in chronic animal experiments, aiming to repair a 15‐mm long gap in the sciatic nerve of rats, and the results are compared with an autograft. Electrophysiological and nociception tests performed monthly during a 4‐month follow‐up show that these conduits allow a good degree of muscle functional recovery. Histological analyses show abundant cellularization in the wall and in the lumen of the conduits and regenerated axons within all rats treated with these grafts. It is suggested that the proposed conduits have the potential to repair nerves over the limiting gap length and can be proposed as strategy to overcome the limitations of autograft.

Funder

Horizon 2020 Framework Programme

European Commission

Fondation Bertarelli

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3