Magnetic Bucket Brigade Transport Networks for Cell Transport

Author:

Block Findan1,Klingbeil Finn1,Sajjad Umer1,Arndt Christine23,Sindt Sandra23,Seidler Dennis1,Thormählen Lars4,Selhuber‐Unkel Christine23,McCord Jeffrey15ORCID

Affiliation:

1. Nanoscale Magnetic Materials and Magnetic Domains Department of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany

2. Biocompatible Nanomaterials Department of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany

3. Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany

4. Chair for Inorganic Functional Materials Department of Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany

5. Kiel Nano Surface and Interface Science (KiNSIS) Kiel University Christian‐Albrechts‐Platz 4 24118 Kiel Germany

Abstract

AbstractControlled transport of biological cells in biomedical applications such as sorting, cell sequencing, and assembly of multicellular structures is a technological challenge. Research areas such as drug delivery or tissue engineering can benefit from precise cell location resulting in faster response rates or more complex tissue structures. Using computational methods, different soft magnetic elements with curved edges are designed to form a transport network, enabling transport and all functionalities for the manipulation of microbeads and cells on surfaces by rotational magnetic fields. Building blocks with bimodal functionalities due to segments of differently curved edges permit breakpoints as well as switchable transport via splitting and combining elements. Connecting the elements, networked paths are realized which allow variable movement patterns of magnetic carriers and cells. The direction of magnetic field rotation is altered to direct the beads and cells into different transport lines, and the exact timing is not critical. The networks are used to achieve deterministic movement of microbeads and cells with minimal intervention. Programmed transport over one millimeter with cell transport velocities of several micrometers per s is demonstrated. Based on scalable microchip technology, the networks can be integrated with CMOS‐compatible materials and straightforwardly combined with sensing and diagnostic structures.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3