Shape Memory Alloy Thin Film Auxetic Structures

Author:

Dengiz Duygu1,Goldbeck Hauke1,Curtis Sabrina M.12,Bumke Lars1,Jetter Justin1,Quandt Eckhard1ORCID

Affiliation:

1. Faculty of Engineering Kiel University 24143 Kiel Germany

2. Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA

Abstract

AbstractAuxetic structures provide an interesting approach to solving engineering problems due to their negative Poisson's ratio, which allows for elongation perpendicular to applied stresses, opposite to a conventional structure's necking behavior. Thus, they can function well in applications requiring compacting the device into a small volume during the deployment (e.g., implants inserted with catheters) or stretchability with area coverage (e.g., stretchable electronics). Fabricating them with shape memory alloys (SMAs) expands the possibilities. The high strains experienced by auxetic structures may become reversible compared to ordinary metals due to superelastic or shape memory effect. This work studies four different auxetic microstructures using thin film SMAs that are capable of surviving strains up to 57.4%. Since these structures are fabricated by layer deposition and lithography, other components, such as microelectronics, can be seamlessly integrated into the fabrication process. These auxetic thin films are investigated for their mechanical behavior under tension for their stretchability and stability. Under tension, thin films are known to show wrinkling instabilities. In two of four designs, the large auxetic behavior leads to wrinkling, while the other two display stable, non‐wrinkling behavior. These designs can be candidates for stretchable electronics, wearable medical devices (e.g., biosensors), or implants (e.g., stents).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3