Engineering 3D Printed Structures Towards  Electrochemically Driven Green Ammonia Synthesis: A Perspective

Author:

Padinjareveetil Akshay Kumar K.1ORCID,Perales‐Rondon Juan V.1,Pumera Martin123ORCID

Affiliation:

1. Future Energy and Innovation Laboratory Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic

2. Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul South Korea 03722

3. Faculty of Electrical Engineering and Computer Science VSB – Technical University of Ostrava 17. listopadu 2172/15 Ostrava 70800 Czech Republic

Abstract

AbstractBroadening scope of 3D printing technology is recently identified as a potential strategy to mitigate concerns in the light of rising energy crisis and environmental imbalances. The importance of ammonia as a hydrogen carrier is well known and, in the context of 3D printing, designing and fabrication of electrode substrates for ammonia synthesis from nitrate sources will present a twofold advantage toward addressing the energy crisis and also limiting the harmful effect of excessive nitrate from the environment. Studies in the direction of employing 3D printed catalysts or reactors for ammonia production have been rarely reported. Thus, in this perspective article, the possibilities of engineering several 3D printed electrocatalysts for nitrate reduction to ammonia via various techniques are discussed and experimental demonstrations to substantiate the potential of 3D printed electrocatalysts toward ammonia production are provided, for the first time. In addition, postfabrication treatments, modification, and patterned coating of 3D printed substrates using active materials are also discussed along with the possibilities of fabricating catalysts for ammonia synthesis via nitrogen reduction reaction. Certain limitations and possible solutions of this printing technology for ammonia production are discussed along with the future outlook. Such timely discussions will be interesting for researchers and scientists for enhancing further possibilities toward broadening this field and toward other catalytic applications.

Funder

Grantová Agentura České Republiky

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3