Affiliation:
1. State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
2. Key Laboratory of Cluster Science of Ministry of Education Beijing Key Laboratory of Photoelectronic/Electro‐photonic Conversion Materials Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
Abstract
AbstractQuantitatively establishing the correlation between nanoparticle size and fluorescence is essential for understanding the behavior and functionality of fluorescent nanoparticles (FNPs). However, such exploration focusing on organic FNPs has not been achieved to date. Herein, we employ the use of supramolecular polymeric FNPs prepared from tetraphenylethylene‐based bis‐ureidopyrimidinone monomers (bis‐UPys) to relate the size to the fluorescence of organic nanoparticles. At an equal concentration of bis‐UPys, a logarithmic relationship between them is built with a correlation coefficient higher than 0.96. Theoretical calculations indicate that variations in fluorescence intensity among FNPs of different sizes are attributed to the distinct molecular packing environments at the surface and within the interior of the nanoparticles. This leads to different nonradiative decay rates of the embedded and exposed bis‐UPys and thereby changes the overall fluorescence quantum yield of nanoparticles due to their different specific surface areas. The established fluorescence intensity‐size correlation possesses fine universality and reliability, and it is successfully utilized to estimate the sizes of other nanoparticles, including those in highly diluted dispersions of FNPs. This work paves a new way for the simple and real‐time determination of nanoparticle sizes and offers an attractive paradigm to optimize nanoparticle functionalities by the size effect.
Funder
National Basic Research Program of China
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Subject
General Medicine,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献