Global level of methylation in the sea lamprey (jawless vertebrate) genome is intermediate between invertebrate and jawed vertebrate genomes

Author:

Zhang Zhao1,Liu Gangbiao1,Zhou Zhan2ORCID,Su Zhixi3,Gu Xun4

Affiliation:

1. MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences Fudan University Shanghai China

2. Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical Sciences Zhejiang University Hangzhou China

3. Singlera Genomics Ltd. Shanghai China

4. Department of Genetics, Development, and Cell Biology Iowa State University Ames Iowa USA

Abstract

AbstractIn eukaryotes, cytosine methylation is a primary heritable epigenetic modification of the genome that regulates many cellular processes. In invertebrate, methylated cytosine generally located on specific genomic elements (e.g., gene bodies and silenced repetitive elements) to show a “mosaic” pattern. While in jawed vertebrate (teleost and tetrapod), highly methylated cytosine located genome‐wide but only absence at regulatory regions (e.g., promoter and enhancer). Many studies imply that the evolution of DNA methylation reprogramming may have helped the transition from invertebrates to jawed vertebrates, but the detail remains largely elusive. In this study, we used the whole‐genome bisulfite‐sequencing technology to investigate the genome‐wide methylation in three tissues (heart, muscle, and sperm) from the sea lamprey, an extant agnathan (jawless) vertebrate. Strikingly, we found that the methylation level of the sea lamprey is very similar to that in sea urchin (a deuterostome) and sea squirt (a chordate) invertebrates. In sum, the global pattern in sea lamprey is intermediate methylation level (around 30%), that is higher than methylation level in the genomes of pre‐bilaterians and protostomes (1%−10%), but lower than methylation level appeared in jawed vertebrates (around 70%, teleost and tetrapod). We anticipate that, in addition to genetic dynamics such as genome duplications, epigenetic dynamics such as global methylation reprograming was also orchestrated toward the emergence and evolution of vertebrates.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3