Semi‐automated, high‐content imaging of drug transporter knockout sea urchin (Lytechinus pictus) embryos

Author:

Tjeerdema Evan1ORCID,Lee Yoon1ORCID,Metry Rachel1,Hamdoun Amro1

Affiliation:

1. Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California San Diego La Jolla California USA

Abstract

AbstractA defining feature of sea urchins is their extreme fecundity. Urchins produce millions of transparent, synchronously developing embryos, ideal for spatial and temporal analysis of development. This biological feature has been effectively utilized for ensemble measurement of biochemical changes. However, it has been underutilized in imaging studies, where single embryo measurements are used. Here we present an example of how stable genetics and high content imaging, along with machine learning‐based image analysis, can be used to exploit the fecundity and synchrony of sea urchins in imaging‐based drug screens. Building upon our recently created sea urchin ABCB1 knockout line, we developed a high‐throughput assay to probe the role of this drug transporter in embryos. We used high content imaging to compare accumulation and toxicity of canonical substrates and inhibitors of the transporter, including fluorescent molecules and antimitotic cancer drugs, in homozygous knockout and wildtype embryos. To measure responses from the resulting image data, we used a nested convolutional neural network, which rapidly classified embryos according to fluorescence or cell division. This approach identified sea urchin embryos with 99.8% accuracy and determined two‐cell and aberrant embryos with 96.3% and 89.1% accuracy, respectively. The results revealed that ABCB1 knockout embryos accumulated the transporter substrate calcein 3.09 times faster than wildtypes. Similarly, knockouts were 4.71 and 3.07 times more sensitive to the mitotic poisons vinblastine and taxol. This study paves the way for large scale pharmacological screens in the sea urchin embryo.

Funder

National Institute of Environmental Health Sciences

Publisher

Wiley

Subject

Developmental Biology,Genetics,Animal Science and Zoology,Molecular Medicine,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3