A Novel Ferroelectric Rashba Semiconductor

Author:

Krizman Gauthier1ORCID,Zakusylo Tetiana1,Sajeev Lakshmi2,Hajlaoui Mahdi1,Takashiro Takuya1,Rosmus Marcin3,Olszowska Natalia3,Kołodziej Jacek J.34,Bauer Günther1,Caha Ondrej2,Springholz Gunther1

Affiliation:

1. Institut für Halbleiter und Festkörperphysik Johannes Kepler Universität Altenberger Strasse 69 Linz 4040 Austria

2. Department of Condensed Matter Physics Masaryk University Kotlárská 2 Brno 61137 Czech Republic

3. National Synchrotron Radiation Centre SOLARIS Jagiellonian University Czerwone Maki 98 Krakow 30‐392 Poland

4. Faculty of Physics Astronomy and Applied Computer Science Jagiellonian University Ul. Prof. Stanislawa Lojasiewizca 11 Krakow 30–348 Poland

Abstract

AbstractFast, reversible, and low‐power manipulation of the spin texture is crucial for next generation spintronic devices like non‐volatile bipolar memories, switchable spin current injectors or spin field effect transistors. Ferroelectric Rashba semiconductors (FERSC) are the ideal class of materials for the realization of such devices. Their ferroelectric character enables an electronic control of the Rashba‐type spin texture by means of the reversible and switchable polarization. Yet, only very few materials are established to belong to this class of multifunctional materials. Here, Pb1−xGexTe is unraveled as a novel FERSC system down to nanoscale. The ferroelectric phase transition and concomitant lattice distortion are demonstrated by temperature dependent X‐ray diffraction, and their effect on electronic properties are measured by angle‐resolved photoemission spectroscopy. In few nanometer‐thick epitaxial heterostructures, a large Rashba spin‐splitting is exhibiting a wide tuning range as a function of temperature and Ge content. This work defines Pb1−xGexTe as a high‐potential FERSC system for spintronic applications.

Funder

Austrian Science Fund

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3