Chemically Programmed Hydrogels for Spatiotemporal Modulation of the Cardiac Pathological Microenvironment

Author:

Yu Chaojie1ORCID,Qiu Yuwei1ORCID,Yao Fanglian1ORCID,Wang Changyong2ORCID,Li Junjie1ORCID

Affiliation:

1. School of Chemical Engineering and Technology Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering Tianjin University Tianjin 300350 China

2. Tissue Engineering Research Center Beijing Institute of Basic Medical Sciences Beijing 100850 China

Abstract

AbstractAfter myocardial infarction (MI), sustained ischemic events induce pathological microenvironments characterized by ischemia‐hypoxia, oxidative stress, inflammatory responses, matrix remodeling, and fibrous scarring. Conventional clinical therapies lack spatially targeted and temporally responsive modulation of the infarct microenvironment, leading to limited myocardial repair. Engineered hydrogels have a chemically programmed toolbox for minimally invasive localization of the pathological microenvironment and personalized responsive modulation over different pathological periods. Chemically programmed strategies for crosslinking interactions, interfacial binding, and topological microstructures in hydrogels enable minimally invasive implantation and in situ integration tailored to the myocardium. This enhances substance exchange and signal interactions within the infarcted microenvironment. Programmed responsive polymer networks, intelligent micro/nanoplatforms, and biological therapeutic cues contribute to the formation of microenvironment‐modulated hydrogels with precise targeting, spatiotemporal control, and on‐demand feedback. Therefore, this review summarizes the features of the MI microenvironment and chemically programmed schemes for hydrogels to conform, integrate, and modulate the cardiac pathological microenvironment. Chemically programmed strategies for oxygen‐generating, antioxidant, anti‐inflammatory, provascular, and electrointegrated hydrogels to stimulate iterative and translational cardiac tissue engineering are discussed.

Funder

National Natural Science Foundation of China

Tianjin Research Innovation Project for Postgraduate Students

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3