Conducting Polymer Nanoparticles with Intrinsic Aqueous Dispersibility for Conductive Hydrogels

Author:

Tropp Joshua1ORCID,Collins Caralyn P.2ORCID,Xie Xinran1ORCID,Daso Rachel E.1ORCID,Mehta Abijeet Singh1ORCID,Patel Shiv P.1,Reddy Manideep M.1,Levin Sophia E.2,Sun Cheng2,Rivnay Jonathan1ORCID

Affiliation:

1. Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA

2. Department of Mechanical Engineering Northwestern University Evanston IL 60208 USA

Abstract

AbstractConductive hydrogels are promising materials with mixed ionic‐electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid‐crystalized PEDOT:PSS nanoparticles (ncrys‐PEDOTX) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm−1, and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys‐PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys‐PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug‐and‐play platform for soft organic bioelectronic materials.

Funder

Alfred P. Sloan Foundation

Office of Naval Research

National Institutes of Health

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3