X‐ray‐Induced Release of Nitric Oxide from Hafnium‐Based Nanoradiosensitizers for Enhanced Radio‐Immunotherapy

Author:

Liu Nanhui1,Zhu Junjie2,Zhu Wenjun1,Chen Linfu1,Li Maoyi1,Shen Jingjing1,Chen Muchao1,Wu Yumin1,Pan Feng2,Deng Zheng1,Liu Yi2,Yang Guangbao3,Liu Zhuang1ORCID,Chen Qian1ORCID,Yang Yang2ORCID

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou 215123 China

2. Department of Thoracic Surgery Shanghai Pulmonary Hospital School of Medicine Tongji University Shanghai 200433 China

3. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou Jiangsu 215123 China

Abstract

AbstractRadiotherapy (RT) is an extensively used strategy for cancer treatment, but its therapeutic effect is usually limited by the abnormal tumor microenvironment (TME) and it lacks the ability to control tumor metastases. In this work, a nanoscale coordination polymer, Hf‐nIm@PEG (HNP), is prepared by the coordination of hafnium ions (Hf4+) with 2‐nitroimidazole (2‐nIm), and then modified with lipid bilayers containing poly(ethylene glycol) (PEG). Under low‐dose X‐ray irradiation, on the one hand, Hf4+ with high computed tomography signal enhancement ability can deposit radiation energy to induce DNA damage, and on the other hand, NO can be persistently released from 2‐nIm, which can not only directly react with the radical DNA to prevent the repair of damaged DNA but also relieves the hypoxic immunosuppressive TME to sensitize radiotherapy. Additionally, NO can also react with superoxide ions to generate reactive nitrogen species (RNS) to induce cell apoptosis. More interestingly, it is discovered that Hf4+ can effectively activate the cyclic‐di‐GMP‐AMP synthase (cGAS)‐stimulator of interferon genes (STING) pathway to promote the immune responses induced by radiotherapy. Thus, this work presents a simple but multifunctional nanoscale coordination polymer to deposit radiation energy, trigger the release of NO, modulate the TME, activate the cGAS‐STING pathway, and finally realize synergistic radio‐immunotherapy.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Suzhou Nano Science and Technology

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3